
Page #

Craig Cuthbert | August 24, 2023

Established in 1987, Integrated Computer
Solutions, Inc. (ICS) delivers innovative software
solutions with a full suite of services to accelerate
development of successful next-gen products.

ICS is headquartered outside Boston in Waltham,
Mass. with offices in California, Canada and
Europe.

● UX and UI design services
● Full stack software development
● Cloud-native application development
● Medical regulatory compliance
● End-to-end software house

2

About ICS

Our Markets

3

Aerospace & DefenseIndustrial Controls
& IoT

Automotive &
Transportation

Medical &
Life Sciences

ICS specializes in software solutions for mission-critical and regulated industries, including:

A Few of Our Customers

4

● What is Rust?
● Discuss similarities and differences between C++ and Rust at a high level
● Look at common pain points in switching to Rust.
● Rust Pros and Cons
● Who is using Rust?
● Why would we want to use Rust vs C++?
● Language Features
● Cargo Build System
● Code Examples
● Future Directions
● Summary and Conclusions
● References

Agenda

5

Why would we want to use Rust vs C++?

Introduction

Page #

Safety!

Speed Comparable to C/C++

Modern Language with Modern Tools

Fun!!

● A big reason Rust was invented was to address some shortcomings of C and C++ while keeping
similar performance.

● Multi-paradigm programming language designed for performance and safety.
● Although syntactically similar to C++ in some cases, it is an entirely different language with a

steep learning curve.
● Can guarantee memory safety by using a “borrow checker” to validate references. In other

words, null references are caught a compile time, not run time.
● Fully compiled, no runtime, comparable performance to C++.
● Does not use garbage collection; reference counting is optional.
● Originally developed by Mozilla research, now run by an independent non-profit foundation.

What is Rust?

7

● Modern Language with modern tools.
● Safety, Concurrency, Speed.
● Reduce or eliminate memory issues without sacrificing performance.
● Developer community likes it and it is growing in popularity.
● Open source libraries and adoption continues to grow.
● Eliminates complex C++ build scripts using the Cargo build system and package manager.
● Concurrency can be trivial compared to C++
● More errors are caught at compile time than in C++.
● The compiler will produce detailed error reports of any errors and warnings.
● Very good documentation.
● Testing, deployment and documentation are built into the language tools and not an

“afterthought”

Pros of using Rust

8

● Steep learning curve.
● First step is to get the thing to compile!
● Need to approach Rust programming differently. Porting may not be straightforward (e.g if

porting inheritance, it will need to be refactored using traits).
● Slower compile times.
● There are currently no mature GUI frameworks for Rust such as Qt.
● Qt can be used but requires unsafe code and/or generated bridge code. It may not be the best fit

at the moment.
● Crossing boundaries (e.g. C++ to Rust or the reverse) can be difficult.

Cons of using Rust

9

● Mozilla https://www.techrepublic.com/article/rust-not-firefox-is-mozillas-greatest-industry-contribution/
● Dropbox https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
● Figma https://www.figma.com/blog/rust-in-production-at-figma/
● Facebook https://engineering.fb.com/2021/04/29/developer-tools/rust/
● Discord https://github.com/serenity-rs/serenity
● Amazon https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
● Microsoft https://learn.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
● Cloudflare https://blog.cloudflare.com/introducing-oxy/

Who is using Rust?

10

https://www.techrepublic.com/article/rust-not-firefox-is-mozillas-greatest-industry-contribution/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.figma.com/blog/rust-in-production-at-figma/
https://engineering.fb.com/2021/04/29/developer-tools/rust/
https://github.com/serenity-rs/serenity
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://learn.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
https://blog.cloudflare.com/introducing-oxy/

How much Rust is in
Firefox?

Rust was invented by Mozilla
for the Firefox browser to
deal with the classic issues in
C++. Since its inception,
interest has been steadily
climbing…

11

Some similarities to C++:

● Data structures are similar to C++ structs.
● Control structures such as if, else, for, while are similar to C++ although the syntax is slightly

different (e.g. no brackets around the condition).
● Enums are more powerful and can contain variant data values and methods.
● Break and Continue are similar to C++.
● Arrays, Hash Maps, Iterators etc. have similar function, but also differences.
● Has Lambda functions (closures).
● As in C++ we can create macros, but the syntax is strange (dev complaints).
● Data types can be declared explicitly or can be inferred by the compiler similar to the C++ auto

keyword.

Language Features

12

Simple Code Example

13

// Hello world plus factorial and for loop
fn factorial(i: u64) -> u64 {
 match i {
 0 => 1,
 n => n * factorial(n - 1),
 }
}
fn main() {
 println!("Hello, World!");
 for i in 0..20 {
 println!("factorial({}) = {}", i, factorial(i));
 }
}

CODE DEMO

SIMPLE EXAMPLE

● Tool to help manage Rust projects.
● Manages building code, downloading dependencies the code needs, and building those

dependencies (and more)
● Conceptually similar to qmake or cmake (but doesn't generate make files).

In the simplest case, Cargo.toml just contains:

[package]
name = "hello_world"
version = "0.0.1"
authors = ["Linus Torvalds <ltorvalds@linuxfoundation.org>"]

Usually source code is in a src subdirectory, e.g. src/main.rs

Cargo Build System

15

% cargo build
 Compiling simple_example v0.0.1
(C:\Source\Rust\webinar\simple_example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.26s

% cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.02s
 Running `target\debug\simple_example.exe`
Hello, World!

Trivia: Rust programmers refer to themselves as "Rustaceans".

Cargo Build System

16

CODE DEMO

HELLO WORLD

Differences from C++ - Ownership and Memory Management:

● An ownership system where all values have a unique owner, and the scope of the value is the
same as the scope of the owner.

● Since there is only one owner, any reference is tied to the lifetime of the owner. If this is
ambiguous the compiler will error.

● Lifetimes are tied to code blocks unless the lifetime is explicitly set by the developer. In other
words, if a lifetime is ambiguous, the program will not compile.

● The Rust compiler enforces these rules at compile time and also checks that all references are
valid. Dangling/null pointers are thus eliminated.

● Memory and other resources are managed through the resource acquisition is initialization
(RAII) convention, with optional reference counting using a “Reference Counted Smart Pointer”
or Rc<T>.

Language Features

18

Ownership and Memory Management:

● Type declaration for variables declared with the keyword let.
● Values can be passed by immutable reference, by mutable reference, or by value. Variables

default to immutable. Can add ‘mut’ keyword to change.
● At all times, there can either be multiple immutable references or one mutable reference (an

implicit readers-writer lock).
● Race and deadlock conditions are limited by compile time restrictions.
● Does not use an automated garbage collection system, but also does not require explicit

deletion of pointers.
● “unsafe” code which can subvert some of these restrictions may be written using the language's

unsafe keyword.

Language Features

19

Ownership:

● Using a (non primitive type such as a string) variable directly with another variable or when
passed to a function transfers the ownership. The previous variable is dropped (in this case the
stack pointer s1 will be removed)

 let s1 = String::from(“abc”);
 let s2 = s1; // causes a “move” and s1 is now invalid
 println!(“s1: {}, s2: {}”, s1, s2); // compile error

 When s2 variable eventually goes out of scope at the end of this function,
 the s2 stack variable will be removed along with the “abc” heap
 allocation automatically.

Language Features

20

Ownership:

 let s1 = String::from(“abc”);
 let s2 = &s1; // “borrow” a reference
 println!(“s1: {}, s2: {}”, s1, s2); // ok

 let s1 = String::from(“abc”);
 let s2 = s1.clone(); // deep copy
 println!(“s1: {}, s2: {}”, s1, s2); // ok

Language Features

21

CODE DEMO

LIFETIMES

Types and Polymorphism:

● Composition is favored over inheritance.
● No inheritance of types, but inheritance of “Traits”.
● Polymorphism is done using traits (similar to an interface) .
● Functions can be given generic parameters, which usually require the generic type to implement

a certain trait or traits.
● Object system is based around implementations, traits and structured types.

Language Features

23

CODE DEMO

OBJECT EXAMPLE

Language Extensions:

● Possible to extend the Rust language using the procedural macro mechanism.
● The println! macro is an example of a function-like macro.

Trivia: Rust has been voted the "most loved programming language" in the Stack Overflow
Developer Survey every year since 2016.

Language Features

25

● Linux has recently added support for Kernel development using Rust.
● Microsoft has created Rust for Windows, which allows creating Rust apps for Windows with

bindings for WIN32 APIs.
● The Google Android team writing low level Android code in Rust.
● Facebook is using Rust in all aspects of development with hundreds of developers writing

millions of lines of Rust code.
● Support for embedded platforms (including microcontrollers).
● Ability to compile to WebAssembly to run in a browser.

Fun fact: A 2021 survey of programmers by SlashData reported that Rust and Lua were the two
fastest growing programming language communities in the past 12 months.

Future Directions

26

Two Linux security researchers estimate that about two-thirds of Linux kernel vulnerabilities come
from memory safety issues. One Microsoft security expert estimates that 70% of the CVEs originating
at Microsoft are memory safety issues. Rust, in theory, can avoid these with its inherently safer
memory model.

Rust is a possible replacement for C++ on multiple platforms. Mostly driven by memory safety and the
fact that it is more modern than C++. Comparable in performance and platform support and
controlled by an independent foundation https://foundation.rust-lang.org/.

To get started visit https://rustup.rs/ and follow the instructions. I recommend using
https://code.visualstudio.com/docs/languages/rust as the editor which has very good support for
Rust.

Summary and Conclusions

27

https://foundation.rust-lang.org/
https://rustup.rs/
https://code.visualstudio.com/docs/languages/rust

● https://www.rust-lang.org/
● https://doc.rust-lang.org/book/title-page.html
● https://doc.rust-lang.org/stable/rust-by-example/
● https://crates.io/
● Online training sites such as Udemy and Pluralsight

○ https://www.udemy.com/course/ultimate-rust-crash-course/
○ https://www.udemy.com/course/ultimate-rust-2/
○ https://www.udemy.com/course/rust-fundamentals/
○ https://www.udemy.com/course/rust-programming-master-class-from-beginner-to-expert
○ https://www.pluralsight.com/courses/fundamentals-rust

Resources to learn more about Rust

28

https://www.rust-lang.org/
https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/stable/rust-by-example/
https://crates.io/
https://www.udemy.com/course/ultimate-rust-crash-course/
https://www.udemy.com/course/ultimate-rust-2/
https://www.udemy.com/course/rust-fundamentals/
https://www.udemy.com/course/rust-programming-master-class-from-beginner-to-expert
https://www.pluralsight.com/courses/fundamentals-rust

Some helpful references

● https://doc.rust-lang.org/std/
● https://rust-lang.github.io/rust-clippy/master/index.html
● https://cheats.rs
● https://www.kernel.org/doc/html/latest/rust/index.html
● https://docs.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
● https://github.com/rust-unofficial/awesome-rust#applications
● https://gist.github.com/zbraniecki/b251714d77ffebbc73c03447f2b2c69f
● https://www.zdnet.com/article/linus-torvalds-on-where-rust-will-fit-into-linux
● https://slint.dev/
● https://github.com/KDE/rust-qt-binding-generator

Other References

29

https://doc.rust-lang.org/std/
https://rust-lang.github.io/rust-clippy/master/index.html
https://cheats.rs
https://www.kernel.org/doc/html/latest/rust/index.html
https://docs.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
https://github.com/rust-unofficial/awesome-rust#applications
https://gist.github.com/zbraniecki/b251714d77ffebbc73c03447f2b2c69f
https://www.zdnet.com/article/linus-torvalds-on-where-rust-will-fit-into-linux
https://slint.dev/
https://github.com/KDE/rust-qt-binding-generator

30

QUESTIONS?

